
Chapter 15

Quantitative Methods for

Bandstructure Calculations

15.1 Introduction

In this chapter, we discuss a non-perturbative or exactly solvable model of electron

bandstructure in a crystal. It is the celebrated Kronig-Penney model. The purpose of

the solution is to illustrate much of bandstructure physics and also to develop a bag of

useful concepts that permeate much of solid state physics.

15.2 Exact Solution: The Kronig-Penney Model

An exactly solvable periodic potential problem in quantum mechanics for the electron is

the Kronig-Penney model. The problem is exactly solvable in all dimensions - we consider

the 1D case. The periodic potential is modeled as a series of Dirac-delta functions

V (x) =
X
n

S�(x� na), (15.1)

where a is the lattice constant, and S is the strength of the perturbation. The sum over

n runs over all lattice sites. For example, for a 1D closed ring of length L with N = L/a

lattice points and lattice constant a, 0  n  N � 1. This is schematically represented

in Figure 15.1.
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Figure 15.1: The Kronig-Penney “Dirac” comb periodic potential for a particle on a
ring. Left: positive or repulsive potential for S > 0, and Right: Negative or attractive

potentials for S < 0.

Now we in the Math primer (**cite**), we have seen the identity
P

n �(x � na) =P
n

1
ae

�i 2⇡
a
nx. Using this relation with Gn = 2⇡

a n and substituting in the Schrodinger

equation, we get

[� ~2
2m

d2

dx2
+

S

a

X
n

e�iGnx] = E . (15.2)

The wavefunctions are Bloch functions, which are Fourier expanded in Gm = 2⇡
a m as

 k(x) = eikxuk(x) = eikx
X
m

uGme
iGmx =

X
m

uGme
i(k+Gm)x, (15.3)

Note that  (x = 0) =
P

Gm
uGm , the sum of all the Bloch coe�cients, in other words,

as long as G’s are reciprocal lattice vectors,
P

G uG =  (0). Now substituting 15.3 in

the Schrodinger equation, we get

X
m

~2(k +Gm)2

2m
uGme

iGmx +
S

a

X
m

X
n

uGme
i(Gm�Gn)x = Ek

X
m

uGme
iGmx, (15.4)

Multiplying by e�iGx and integrating over all x, we use to identity
R L
0 ei(G

0�G)xdx =

L�G,G0 to get

~2(k +G)2

2m
uG +

S

a

X
n

uGn+G = EkuG, (15.5)
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Solving for uG yields

uG =
S

a

P
Gn+G uG

Ek � ~2(k+G)2

2m

, (15.6)

Now for a very useful trick: summing both sides over G0s cancels the uG terms becauseP
Gn+G uG =

P
G uG =  (x = 0), leaving us with the identity

1 =
S

a

X
G

1

Ek � ~2(k+G)2

2m

. (15.7)

This is a rather fancy way of writing unity! Note that this is an exact form of the

solution of Schrodinger’s equation for the periodic potential problem. Inverting it into

the form

a

S
=

X
G

1

Ek � ~2(k+G)2

2m

, (15.8)

we are in a position to investigate the aftermath of the solution in Equation 15.7.
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Figure 15.2: A graphical solution scheme for the repulsive Kronig-Penney Dirac comb.
Note that the lowest energy is larger than zero.

Figure 15.2 shows a graphical solution of Equation 15.8 plotted as a function of the

energy Ek for two values of k. When the strength of the potential S > 0, a/S > 0,

and is the constant shown in red in the Figure. The RHS is a complex function of

energy Ek, with a number of poles located at Ek = ~2(k+G)2

2m , where the RHS diverges.

There are several points of intersection - one of which is highlighted. The energies

Ek corresponding to these intersection points are the only allowed eigenvalues for the
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problem. There are several allowed eigenvalues: in fact, there are exactly N distinct

eigenvalues corresponding to n = 0, 1, ..., N � 1 values of Gn = 2⇡
a n.

If we turn the strength of the potential down by taking S ! 0, the red line corresponding

to a/S goes o↵ to +1, and the intersections of the RHS and LHS then are exactly at

the N energies for which the RHS blows up. Clearly, these energy eigenvalues are at

Ek = ~2(k+G)2

2m , and we have recovered the nearly free-electron model of the electron.

If the strength is made very large, ...

If the strength is made negative by letting S < 0, it is clear that the red line a/S < 0,

and there is an energy intersection for energy that is negative, i.e., Ek(min) < 0. This

is a “bound” state... or weakly mobile...
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Figure 15.3: The solid lines show the bandstructure for repulsive (left) and at-
tractive (right) Kronig-Penney potentials. The nearly-free electron bandstructure

E(k) = ~2(k+G)2

2m is shown as dashed lines. The allowed energy bands are indicated
in gray along with the energy gaps.

Figure 15.3 shows the calculated energy bandstructures for S > 0 (left) and S < 0 (right).

The axes are in units of F = ~2
2m · (⇡a )

2 for energy, and 2⇡
a for k. The solid lines in the

figure represents several important features of any bandstructure in the presence of a



Chapter 15. Quantitative Methods for Bandstructure Calculations 120

non-zero periodic potential. This is superposed on the dashed line plot of bandstructure

when the periodic potential is turned o↵ (S = 0), but the electron wavefunction is still

required to satisfy the lattice periodicity and symmetry, the ‘nearly’ free-electron (NFE)

model with E = ~2(k+G)2

2m . Note that for a repulsive potential with S > 0, the Kronig-

Penney bandstructure energies are higher than the NFE values at all values of k except

at the Brillouin zone center and edges k = 0,±⇡
an. The highest eigenvalue of each

Kronig-Penney band is degenerate with the NFE eigenvalues of E(k = n⇡
a ) = n2 · F ,

where n = 1, 2, ..., locating energy eigenvalues F, 9F, ... at k = ±⇡
a at the BZ edge, and

4F, 16F, ... at k = 0 as the maxima of the corresponding bands.

That the energy eigenvalues for S > 0 are higher (or equal to) than the NFE values is

guaranteed by the Hellmann-Feynman theorem. The Hellmann-Feynman theorem states

that the eigenvalues Ek of any Hamiltonian Ĥ satisfy @Ek
@� = hk|@Ĥ@� |ki. Imagine the

Kronig-Penney potential as a perturbation to the NFE Hamiltonian Ĥ = Ĥ0 + �Ŵ

where W (x) = S
P

n �(x � na), and Ĥ0|ki = E0
k |ni, the eigenvalues of the NFE model

E0
k = ~2(k+G)2

2m shown by the dashed lines in Figure 15.3. Then, we must have @Ek
@� =

hk|@(Ĥ0+�W )
@� |ki = hk|W |ki =

R
dx| k(x)|2W (x) = SN |uk(0)|2 � 0, and the perturbed

eigenvalue Ek � E0
k . This remains true at all points in k�space except at points of

degeneracy, as indicated by an arrow in the left figure of Figure 15.3. At k�points were

eigenvalues are degenerate, the splitting is such that for S > 0, one eigenvalue increases,

while the other stays put. The lowest energy allowed is E+
min > 0 for S > 0, and the

lowest band is rather narrow. This means the electron is ‘sluggish’ in this band, and it

has a large e↵ective mass. As we move up to higher energies, the points of degeneracy

develop sharper curvatures and the bands become wider, making the electron e↵ective

mass lighter.

Note the di↵erences for the attractive delta potential (S < 0) band structures high-

lighted by the right panel in Figure 15.3, and drawn at exactly the same scale for easy

comparison. The lowest energy allowed now is E�
min < 0 for S < 0, i.e.. it is negative in

stark contrast to the situation for S > 0. The Hellmann-Feynman theorem now guaran-

tees that the eigenvalues are lower than the NFE case. At the k�points of degeneracy,

the splitting is such that one eigenvalue stays put again, but the other is pushed down,

exactly opposite to the case of S > 0. The lowest eigenvalue of each Kronig-Penney band

is degenerate with the NFE eigenvalues of E(k = n⇡
a ) = n2 ·F again, where n = 1, 2, ...,

locating energy eigenvalues F, 9F, ... at k = ±⇡
a at the BZ edge, and 4F, 16F, ... at k = 0

as now the minima of the corresponding bands.



Chapter 15. Quantitative Methods for Bandstructure Calculations 121

15.3 Tight-binding models emerge from Kronig-Penney

We will now see that an approximate method to calculate bandstructures called the

tight-binding method emerges naturally from the exact Kronig Penney model. Apply

the trigonometric identity cot(x) =
P+1

�1
1

n⇡+x on the right hand side of the central

Kronig-Penney eigenvalue equation 15.8, using the fact Gn = n2⇡
a . A few trigonometric

identities later, equation 15.8 transforms into:

cos(ka) = cos(qa) +
mSa

~2 · sin(qa)
qa

, (15.9)

where q =
p
2mEk/~2. This is still an exact solution of the Schrodinger equation. Now

the values of Ek that satisfy this equation will form the energy bandstructure Ek for

each k. The left hand side is limited to �1  cos(ka)  +1, but the RHS of equation

15.9 can reach values up to 1 + mSa
~2 = 1 + C which can clearly exceed unity. This

restricts the allowed values of q for real energy eigenvalues E = ~2q2
2m for each k. Figure

15.4 shows the ‘bands’ of q where the RHS lies between �1  RHS  +1, and real

energy eigenvalues are allowed.

Now the zeroes of sin(x)
x occur at x = n⇡ where n = ±1,±2, .... It is clear that a band of

q�values, and corresponding energies are allowed near the zeroes of the RHS as indicated

in Figure 15.4 (left). Let us find an approximate solution for the first band E1(k) by

expanding the RHS for a large strength, or C = mSa
~2 >> 1 near the first zero at n = 1,

around qa = ⇡. Using � = ⇡ � qa, the expansion yields cos(qa) + C · sin(qa)
qa ⇡ �1 + C

⇡ �,

which when used in equation 15.9 yields

E1(k) ⇡ E0 � 2J(1 + cos ka), (15.10)

where E0 = ⇡2~2
2ma2 coincides with the NFE energy at k = ⇡

a , and the “hopping” or

tunneling term is J = ⇡2~4
2m2a3S = E0

C . This is clearly in the form of a tight-binding model!

Now we really don’t need to stop at the first root - expanding around qa = n⇡, and

retaining only the linear expansion terms, we get a more comprehensive tight-binding

bandstructure of the nth band as:

En(k) ⇡ n2E0
⇥
1� 1

C
+

(�1)n

C
cos(ka)

⇤2
. (15.11)

Figure 15.4 shows a plot of the first three bands for the dimensionless strength C = 10.

Note that the energy eigenvalues at the BZ edges co-incide with the free-electron values.

This is similar to the case for S > 0 in the Kronig Penney model in Figure 15.3 (Left).
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Figure 15.4: The left figure shows a plot of the RHS of Equation 15.9 with x = qa,
and the LHS is limited to �1  LHS  +1. The narrow bands within which the
two sides are equal are highlighted; each leads to an allowed energy band. Because
the intersections are near x = n⇡ where n = ±1,±2, ..., an approximate analytical
expression of all the bands can be obtained (see Equation 15.11). This first three
tight-binding bandstructures are plotted in the right panel. Compare with Figure 15.3.

Now we can write down a more general tight-binding model by starting from orbitals

that are localized at each lattice point, and by trying linear combinations of such orbitals

in the Bloch-form to coax out the E(k) eigenvalues and corresponding eigenfunctions.

We write the linear combination of atomic orbitals (LCAO) ansatz wavefunction as

| i =
NX

m=1

eik·Rm

p
N

|mi, (15.12)

where we have initially assumed just one orbital per lattice site, and  (r) = hr| i
and �m(r) = hr|mi is the orbital centered at site m. This way or writing the ansatz

ensures it is indeed a Bloch function, which is verified by checking r ! r+R leads to

 (r+R) = eik·R (r). We feed this ansatz into the Schrodinger equation, cancel
p
N

from each side, and get the relation for energy eigenvalues E(k) for each value of k:

Ĥ
NX

m=1

eik·Rm |mi = E(k)
NX

m=1

eik·Rm |mi, (15.13)
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We note that Ĥ does not a↵ect eik·Rm , it acts only on |mi. Next we project both

vectors on to the ansatz
PN

n=1 e
ik·Rnhn|, and rearrange to get the central result of the

tight-binding energy bandstructure:

E(k) =

PN
n,m=1 e

ik·(Rm�Rn)hn|Ĥ|miPN
n,m=1 e

ik·(Rm�Rn)hn|mi
, (15.14)

where ... Now it is clear that there are N2 terms in the double sum. Out of these, the N

‘diagonal’ terms are obtained when n = m, for which we have eik·(Rm�Rn) = eik·(0) = 1

and the diagonal matrix elements are all equal: hn|Ĥ|ni = E0. This energy is slightly

lower in energy than the original ‘atomic’ orbital energy because each electron orbital

also sees nearby atomic potentials. In the denominator, the diagonal sum gives justP
eik·(0)hn|ni = N . Let us now look at the rest N2 � N o↵-diagonal terms in the

numerator and denominator.

Now considering a 1D lattice of lattice constant a, for the 1st nearest neighbors, we

have N terms for which the terms in the numerator take the form
PN

n=1(e
+ikahn|Ĥ|n+

1i + e�ikahn � 1|Ĥ|ni) = �2Nt1 cos (ka), where the hopping integral t1 = hn|Ĥ|n +

1i. Similarly, the denominator gives the sum of the N 1st nearest neighbor terms as

+2Ns1 cos (ka), where s1 = hn|n + 1i is clearly very small because of decaying wave-

functions that are tightly bound to the lattice sites.

There are N more terms for the 2nd nearest neighbors characterized by the hopping

integral t2 = hn|Ĥ|n+ 2i and the overlap integral hn|n+ 2i = s2. And then for the 3rd

nearest neighbor, and so on... It is intuitively clear that the successive terms tn and sn

decay fast. Now we can write the expression for the tight-binding bandstructure as:

E(k) =
E0 � 2t1 cos (ka)� 2t2 cos (2ka)� 2t3 cos (3ka)...

1 + 2s1 cos (ka) + 2s2 cos (2ka) + 2s3 cos (3ka)...
⇡ E0 � 2t1 cos (ka). (15.15)

If instead of 1D, we are in 2D or 3D, then there are more nearest neighbors and the

bands acquire more “structure”.

15.4 Point defects in Kronig-Penney Models

Now imagine that in the Kronig-Penney model, only one of the N sites has a potential

that is di↵erent from the other sites. Let us call this di↵erence in the strength U0,

meaning at this particular site, the delta-function strength is S+U0 instead of S, where
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U0 can be positive or negative. What is the e↵ect on the energy eigenvalues and the

eigenstates due to the presence of this ‘defect’?
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Figure 15.5: Figures showing the e↵ect of defect states on the allowed energy eigen-
values as a function of the defect potential strength. The left figure shows the graphical
solution to the Kronig-Penney type solution, and in particular illustrates the splitting
o↵ of one eigenvalue - the highest eigenvalue of the band for positive defect potentials,
and the lowest energy eigenvalues for negative defect potentials. This is further high-
lighted in the figure on the right, where the eigenvalue spectrum is plotted as a function

of the defect potential.

This problem can now be solved because the exact solution of the Kronig-Penney model

without the defect has given us the eigenvalues for each k�state in the BZ as EKP (k) - for

example - shown in Figure 15.3. Then, we go through exactly the same procedure that

led to the Kronig-Penney solution in Equation 15.8, and end up with the new solution

Na

U0
=

X
k

1

Ek � EKP (k)
, (15.16)

where k are the allowed states in the 1st BZ, N is the number of lattice sites, and

therefore Na = L is the macroscopic length. Clearly, in the absence of the defect,

U0 ! 0, and the LHS! 1. This happens exactly N times in the RHS when the allowed

energies Ek = EKP (k), i.e., we recover the original Kronig-Penney solution without the

defect, as we should.
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But when U0 6= 0, the allowed energies Ek must deviate from EKP (k) to satisfy the

exact solution above. To illustrate the solution graphically, we plot the RHS and the

LHS in Figure 15.5. We will see in the next section that the RHS of Equations 15.16

and 15.8 are actually the Trace of the Green’s function matrix of the problem, i.e.,P
k

1
Ek�EKP (k) = Trace[Ĝ(E)]. The plot in Figure 15.5 for a few-site chain shows the

e↵ect of the defect on the eigenvalue spectrum clearly. The figure on the right illustrates

the movement of the eigenvalues as the strength of the defect is tuned from zero to large

positive and large negative. The eigenvalues at U0 = 0 constitute the band without the

defect. When the defect strength is +ve and strong, the LHS L/U0 line moves closer to

the x�axis (left figure), and it is clear that one of the intersections - at the top of the

energy band splits o↵ from the band rapidly, whereas all other eigenvalues do not change

as much. Any change is positive, as guaranteed by the Hellmann-Feynman theorem.

This is a characteristic feature - similarly, for a negative U0, the lowest eigenvalue of the

band splits o↵ and leaves other eigenvalues mostly unchanged.

We will see later that U0 > 0 ‘defects’ explain the formation of acceptor states at

the top of valence bands, and are designed such that the splitting energy is less than

kT for room-temperature generation of holes. Similarly, the bottom of the band with

U0 < 0 models donor states and electron doping at the bottom of the conduction band

of semiconductors.

15.5 Green’s functions and Kronig-Penney for higher-dimensions

We noted the repeated appearance of sums over the Brillouin zone of the kind
P

k
1

E�E(k)

which have units of (energy)�1. This may be thought of as a function of the variable

E, or energy. The reason why such sums permeate exact solutions of problems will now

become clear: and will lead us to define Green’s functions.

Consider the Schrodinger equation

i~ @
@t
 = Ĥ ! [i~ @

@t
� Ĥ] = 0. (15.17)

Let us think of the equation as the product of the operator (or matrix) i~ @
@t � Ĥ with

 . For this product to be zero, either i~ @
@t � Ĥ or  , or both should be zero. The

only interesting case here is when we actually have a quantum object with a nonzero

wavefunction,  6= 0. Thus, i~ @
@t � Ĥ should be zero. Now we have learnt that if the

quantum object is in a state of definite energy, i~ @
@t n = En n,  n, and En is a real

eigenvalue representing the energy of the state. Let us generalize this and write i~ @
@t = E,
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where E is a variable. We can then write the Schrodinger equation as [EI � Ĥ] = 0,

where I is an identity operator, or the identity matrix when the equation is written

out for any chosen basis. However, the equation in this form does not hold true for

all E, but only for certain E = En - only when the variable E matches up with an

allowed eigenvalue. Now let us think of EI � Ĥ as a function of E. When we vary

E, this function has very sharp responses when E = En: the function is a ‘detector’ of

eigenvalues - it detects an eigenvalue by vanishing. At those sharp energies,  =  n 6= 0

is an eigenfunction, so the function provides the eigenfunction as its ‘residue’. Now with

this qualitative picture in mind, let us solidify the concept of the Green’s function of the

system.

We like detectors to ‘scream’ when they detect, rather than to go silent. So, can we find

a function Ĝ that instead of solving the equation [EI � Ĥ] = 0, solves the equation

[EI � Ĥ]Ĝ = I instead? Formally, the function is clearly Ĝ = [EI � Ĥ]�1. This

function clearly blows up when E = En, and is indeed the screaming detector we are

looking for. It is the Green’s function for the Hamiltonian Ĥ. Let us assume that we

know all the eigenvalues of a particular Hamiltonian Ĥ0 to be En and the corresponding

eigenfunctions are |ni. The Green’s function can then be written out as a matrix form

Ĝ0(E) =
X
n

[EI � Ĥ]�1|nihn| =
X
n

|nihn|
E � En

. (15.18)

It is clear that the Green’s function is actually a matrix, and sums of the kind that

appeared earlier in the solution of the Kronig-Penney and the defect problems are the

sum of the diagonal terms in a diagonal basis. Now it turns out that the sum of the

diagonal terms is invariant with what basis one writes the matrix - which is why it goes

by a name - the Trace. Thus, we have a very important relation

Trace[Ĝ(E)] =
X
k

1

E � E0(k)
(15.19)

where E0(k) are the allowed eigenvalues of the system. The solution of the Kronig-

Penney model is thus very compactly written in the formal way as Trace[Ĝ0(E)] =
a
S , where Ĝ0(E) = (EI � Ĥ0)�1, and Ĥ0|ki = E0(k)|ki are the nearly-free electron

eigensystem, with E0(k) =
~2(k+G)2

2m . The solution of a single-site defect state of strength

S0 is then written as Trace[Ĝ(E)] = Na
S0

, where now the Green’s function is for the

exactly solved Kronig-Penney eigensystem Trace[Ĝ(E)] = (EI � Ĥ)�1, where Ĥ|ki =

EKP (k)|ki, and EKP (k) are the Kronig-Penney eigenvalues.

More on Green’s functions - relation to DOS, etc to be written...
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