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We use perturbative effective mass theory as a toy theoretical model for quantum confinement
(QC) in Si and Ge quantum wells (QWs), wires (Q-wires) and dots (QDs). Within the limits of
strong, medium, and weak QC, valence and conduction band edge energy levels (VBM and CBM)
were calculated as a function of QD diameters, QW thicknesses and Q-wire diameters. Crystalline
and amorphous quantum systems were considered separately. Calculated band edge levels with
strong, medium and weak QC models were compared with experimental VBM and CBM reported
from X-ray photoemission spectroscopy (XPS), X-ray absorption spectroscopy (XAS) or photolumi-
nescence (PL). Experimentally, the dimensions of the nanostructures were determined directly, by
transmission electron microscopy (TEM), or indirectly, by x-ray diffraction (XRD), or by XPS. We
found that crystalline materials are best described by a medium confinement model, while amor-
phous materials exhibit strong confinement regardless of the confinement dimensions of the system.
Our results indicate that spatial delocalization of the hole in amorphous versus crystalline nanos-
tructures is the important parameter determining the magnitude of the band gap expansion, or the
strength of the quantum confinement. In addition, the effective masses of the electron and hole are
discussed as a function of crystallinity and spatial confinement.

PACS numbers: 73.21.-b,73.22.-f,78.67.-n,61.46.-w,81.07.-b

I. INTRODUCTION

The phenomenon of quantum confinement (QC) is de-
fined as the modification in the free particle dispersion
relation as a function of a system’s spatial dimension.
Quantum mechanics predicts that if a free electron is
confined within a potential barrier, such that the spa-
tial dimension of the wave amplitude of the electron is
greater than or equal to the spatial dimension of the
potential barrier, then the energy levels of the electron
become discrete. Furthermore, the electron energy lev-
els are inversely proportional to the size of the system.
Therefore, QC is observed in optical experiments when
the dimension of the system is systematically reduced
and an increase in the absorbed/emitted photon energy
is measured corresponding to electron transitional states.
For semiconductor materials the essential features of

QC are directly carried over from the single electron
model. The optical transitional energies refer to the tran-
sition between the valence band maximum (VBM), con-
sidered as the ground state energy, and the conduction
band minimum (CBM), the first excited state. As a re-
sult, the emitted photon energy is directly proportional
to the gap energy (EG). The confinement potential is
determined by the alignment of the respective Fermi lev-
els when a material of a EG1 is surrounded by a ma-
terial of a EG2, with EG1 < EG2.

1 Therefore, QC in a
semiconductor material implies the energy levels in the
conduction band (CB) and the valence band (VB) be-
come discrete. In addition, QC increases the oscillator
strength in a semiconductor nanostructure compared to
the bulk state, making materials like Si viable for opto-
electronics.2

Semiconductor materials contain holes that can dra-

matically change the energy of the emitted photon. Us-
ing time-reversal symmetry, it can be shown that the hole
has all the properties of an ordinary particle.3 However,
electrons and holes have different effective masses due to
their respective positions in the Brilloun zone, leading
to different interaction strengths with the crystal field.
If direct electron-hole (e-h) recombination occurs across
the band gap, the energy of the resulting photon is the
kinetic energy of the electron plus the hole, which is a
function of the effective mass subject to the boundary
conditions of the material. Furthermore, the electron and
hole can form a hydrogenic or positronium-like exciton,
a bound state of the constituent particles, thus modify-
ing the photon energy during the recombination event by
the Coulomb interaction between the electron and hole.
Therefore, it is important to understand the kinetics of
the hole and the effective mass of the e-h pair.
Beyond direct e-h recombination, other factors, given

below, affect the electronic dispersion and/or the PL dy-
namics, frequently observed as a stretched exponential
decay behaviour.4 This list is not meant to be exhaus-
tive; nanostructures have been shown to exhibit higher
order effects.5 For a review of these factors and general
properties of low-dimensional structures, see Refs. 5–7.

• Surrounding matrix: A nanostructure surrounded
by a matrix with a different dielectric constant
changes the strength of interaction with the image
charges in that matrix.7 In addition, the choice of
the matrix material can indirectly effect all of the
subsequent factors considered here.

• Stress: Tensile versus compressive stress will in-
crease or decrease, respectively, the band gap.8

• Mid-gap states or relaxed states, such as sur-



face/interface states, sub-oxide states, defect states
and doping6,9–11 create an alternative path for e-h
recombination.

• Nanostructure shape: The shape of a nanostruc-
ture can be irregular, which breaks symmetry in
the crystal. Thereby, selection rules are broken,
the effective mass of the carriers is modified and the
overall strength of the confinement is modified.7

• Phonon bottleneck: Relaxation via phonons can
only occur if the energy difference between the lev-
els is exactly matched by the phonon energy.12 The
influence of phonons is discussed further in Sec. II.

• State-filling effects: Under the influence of a large
excitation power, higher energy levels will become
populated and change the relaxation dynamics.13

• Auger processes: This phenomenon has been ob-
served in porous-Si (por-Si).14

• Finite confinement potential: Compared to an infi-
nite confinement potential, the finite case will cor-
respond to an overall lowering of the electronic en-
ergy levels.15 Carriers can exhibit tunnelling effects,
and/or when a distribution of nanostructure sizes
exist7, super-radiance effects are possible.16 A dis-
cussion of the infinite and finite confinement model
is given in Sec. II and IV.

• Temperature: Thermal relaxation has been shown
to primarily affect the full width half maximum of
the resulting PL spectrum.17

Although we do not consider the above effects in our
model, they are discussed throughout this article when
appropriate. At present, we consider a relatively sim-
ple model of direct e-h recombination using a ‘particle
in a box’ type model as a perturbation to the effective
mass theory. The advantages of this toy model over
others (for example see Refs. 15, 18, and 19) include
no adjustable parameters69 and the transparency of the
physics involved. Both factors are very useful for direct
comparisons between different systems of confinement.
The model is applied to experimental results on crys-

talline and amorphous Si and Ge nanostructures, in-
cluding quantum wells (QWs), wires (Q-wires) and dots
(QDs). Si and Ge are considered because due to their ele-
mental nature a few of the factors discussed above can be
ignored. Systems of regular shape are chosen to ensure
crystallinity is the primary parameter. For example, data
obtained by van Buuren et al.20 for high quality ‘star-
shaped’ samples are difficult to analyse theoretically. In
so doing, we are able to get a revealing picture of how
the electron and hole behave in the crystalline (c) versus
the amorphous (a) system.
Theoretical modelling can be further complicated by

the accuracy of nanostructure size determination. Trans-
mission electron microscopy (TEM) is the direct method
to determine nanostructure size; however, if the contrast

between the matrix and the nano-structure is poor, then
the size uncertainty can be on the order of 1 nm.21 In-
direct size determinations can be used as well, such as
with x-ray diffraction (XRD)22 or x-ray photo-emission
spectroscopy (XPS).23 Furthermore, QC in Ge has been
a greater challenge for researchers to observe than in Si,
because of the tendency to form defects, interfacial mix-
ing and sub-oxide states.10,24–26 Therefore, only limited
results on Ge are discussed here. However, there is recent
progress in this area, showing very promising results.27

II. THEORY

In this work, we use the effective mass approxima-
tion (EMA). Extensive arguments appear in the liter-
ature concerning the validity of the EMA and its k · p
generalization. On the one hand, it is argued and demon-
strated that the EMA overestimates the EG.

7,18 In part,
this is because due to QC the parabolic nature of the
bands is possibly removed. Another complication can
arise from the fact that the envelope functions may not
be slowly-varying over the unit cell. However, in this
article it is shown that in some cases the EMA can un-
derestimate the EG. Another complication for EMA is
in its applicability to a-materials. Street has argued that
while it is strictly not justified in the a-system, due to
nonspecifically-defined k vectors, it is still widely used
albeit with differing assumptions.28 We will discuss fur-
ther the application of the EMA to both amorphous and
nano-structured systems in Sec. IV.
On the other hand, it has been argued by Sée et al.

that the EMA is well justified.29 Such arguments reside
in the fact that it is not clear what all the relevant pa-
rameters are in a nano-structured system of a particu-
lar material. In general, the boundary conditions of the
system become very important, which is a problem for
all theories.30 If the Fourier components of the envelope
function are centred around the the Brillouin zone cen-
tre, then envelope functions can be justified. In addition,
this justification has been extended to consider that if
the interface is defect free then the EMA is justified.30

Other considered corrections to the EMA use a fourth
order term in k.7 The advantage of the EMA is that it
is straightforward in its application, thus allowing one
to highlight key features of individual systems. Further-
more, as compared to empirical methods,31 which pro-
duce a dimensional dependence of D−1.39, the EMA has
the correct units (D−2, see (3)).
The Bohr radius of an electron (e), hole (h) or exciton

(X) is given by, in SI units:

ae(h)(X) =
4πǫ~2

m∗
e(h)(X)e

2
,

m∗
e(h)(X) is the effective mass of the e, h or X, respec-

tively, e is the electric charge and ǫ is the dielectric con-
stant. Depending on the e or h effective mass, the X-Bohr



radius is 4.5 nm for Si and 24 nm for Ge. The Bohr radius
defines the spatial dimension of the particles, which de-
termines the range of sizes for which QC can be observed.
We define three regimes of confinement here:7

• Weak confinement: When the dimension of the sys-
tem is much larger than ae and ah. In this situa-
tion, the appropriate mass in the kinetic term is
M = m∗

e +m∗
h. The energy term is dominated by

the Coulomb energy.

• Medium confinement: When the dimension of the
system is much smaller than ae, but larger than
ah, then only electrons will experience confinement.
The relevant mass is simplym∗

e for the kinetic term.
Most materials belong to this class.

• Strong confinement: When the dimension of the
system is much smaller than ae and ah. Here both
electrons and holes experience confinement and the
relevant mass is the reduced mass, µ, with 1

µ =
1

m∗

e

+ 1
m∗

h

. In this regime, the Coulomb term is small

and can generally be treated as a perturbation.

Below we will use the terms ‘weak,’ ‘medium’ and ‘strong’
to refer to the different regimes of confinement discussed
above.
Si and Ge are both indirect gap materials, meaning

that, in principle, phonon scattering events are essential
to maintain momentum and energy conservation during
a radiative event. This situation is true in the case of
a bulk material; however, as the dimension of the sys-
tem is reduced, the uncertainty in the momentum k vec-
tor is increased. Therefore, it is possible to break the
k selection rules making the EG ‘pseudo-direct,’ allow-
ing for direct e-h recombination.32 The length scale at
which this ‘pseudo-direct’ phenomenon becomes impor-
tant is typically less than a few nanometres.19,33,34 This
length scale corresponds to the systems considered here;
therefore, theoretically it is valid to assume direct e-h
recombination without phonon-assistance.
In the ‘particle in a box’ model the bulk EG is taken

as the ground state energy. The effect of reduced di-
mension is considered as a perturbation to the bulk EG.
Therefore, we consider the general field Hamiltonian for
a system of Coulombic interacting particles given by (de-
tails are given in Ref. 35):

H =

∫

d3rψ†(r)

(

−~
2

2m
▽2

)

ψ(r) +

1

2

∫

d3rd3ŕψ†(r)ψ†(ŕ)
e2

4πǫ|r − ŕ|
ψ(ŕ)ψ(r), (1)

where ψ(r) is the field operator, m is the mass of the
electron or hole, ǫ is the dielectric constant of the sur-
rounding medium and e is the electric charge. We do
not consider the spin-orbit interaction here, because the
fine-structure is beyond the scope of this work.

The field operators are expanded in a two-band model
for the conduction band C and the valence band V as:

ψ(r) =
∑

k

ak,iϕk,i(r) (i ∈ C, V ), (2)

where k represents a summation over momentum states.
The ϕk,i(r) basis set in Eq. (2) is expanded to reflect the
use of an infinite confinement potential with a Bloch basis
uk,i. Infinite confinement is a reasonable assumption for
the systems we are considering, because the matrix mate-
rial has a EG several eV higher than the nano-structure;
however, we can not discuss hopping or other such higher
order effects. Bloch states reflect the periodic nature of
the crystal (Luttinger-Kohn representation), while the
boundary conditions of a nanostructure do not reflect
this same periodicity. However, in many nanostructures
the transitions we are interested in happen near the Bril-
louin zone centre, e.g. the Γ-point. This statement may
not be strictly true in the case of weak confinement, be-
cause k-selection rules are not as strongly broken as in the
case of strong confinement. Nonetheless, k · p perturba-
tion theory considers expansions about the Brillouin zone
minimum, ko. Therefore, we may justify the use of Bloch
states through the use of the slowly varying wave approx-
imation whereby only the ko=0 states are retained.
For indirect gap materials the exciton is Wannier-like,

in the limit k ≪ π
ac

(ac is the lattice spacing) and we
can drop the exchange term, which goes to zero quickly.
Equation (1) is solved in the exciton basis using the state
Φ defined as an e-h pair above the ground state, Φ0, as:

Φ =
∑

k1k2
Ck1k2

a†k1
b†k2

ΦV , & ΦV = bk3
bk4

· · · bkN
Φ0,

where ak (bk) refers to electrons (holes) in the conduction
(valence) band. Expanding in low lying k-states near the
band edge, we solve EG(D) = 〈Φ| H |Φ〉, which gives the
variation of gap energy with nano-structure size.
For the mass terms in Eq. (1), we use the effective

masses calculated using the density of states.36 The ef-
fective mass is related to the parabolicity of the band
structure, which is not expected to change in a nano-
structure compared to a bulk material at the Γ-point.
Therefore, we assume the effective mass from the bulk
system. For Si the effective masses at room temperature
are: mc → m∗

c = 1.08mo and mV → m∗
V = 0.57mo.

For Ge the effective masses are: mc → m∗
c = 0.56mo

and mV → m∗
V = 0.29mo. These definitions yield the

equation:

EGap(D) = EGap(∞) +
A

D2
eV · nm2. (3)

EGap(∞) is the band gap of the bulk material and D
represents the QD diameter, the QW thickness or the
Q-Wire diameter in what follows. The calculation was
carried out for confinement in 1D, 2D with cylindrical
coordinates and 3D with spherical coordinates. The pa-
rameter A is given for Si and Ge in the strong, medium
and weak confinement regimes in Table I. The other fixed
parameter is the appropriate EG(∞) of the bulk system
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FIG. 1. Disordered Si-QW data and theoretical fit. Experi-
mental data from Ref. 37. Theoretical fit using A=0.89 and
EGap(∞) = 1.6 eV in Eq. (3). NB: The CBM shift is offset
by the EGap(∞).

and one could argue for the use of a renormalized effective
mass with dimension of the system, which is discussed in
Sec. IV.

III. RESULTS

A. Silicon

1. Quantum Well

Si/SiO2 superlattice Si-QWs have been grown using
molecular beam epitaxy, determined to be disordered
via Raman scattering measurements, and their thick-
ness found using TEM and XRD.37,38 The change in the
VBM and CBM position was measured using XPS and
Si L2,3 edge absorption spectroscopy, respectively, and
room temperature PL spectroscopy was measured. Fig.
1 plots the model predictions with the experimental data;
∆ECBM is labelled as ‘medium confinement,’ because a
∆ECBM is equivalent to QC of the electron only as de-
fined by our model.
In Ref. 37 the authors used a fitting procedure accord-

ing to the effective mass theory for the ∆EV BM(CBM),

resulting in ∆EV BM = −0.5/D2 and ∆ECBM = 0.7/D2,
where D is the thickness of the QW. Our model predicts
∆EV BM = −0.66/D2 and ∆ECBM = 0.35/D2. The
trend for ∆ECBM is more accurately given in Ref. 37.
In Ref. 38, the change in EG was fitted with A = 0.7
and EGap(∞)=1.6 eV, as in Eq. (3). The fit also de-
termined the effective mass to be m∗

h(e) ≈ 1. The model

uses EGap(∞)=1.6 eV to fit the experimental PL data
well when employing the curve for strong confinement
with A = 0.89.
Next we look at c-Si/SiO2 QWs fabricated by chemical

and thermal processing of silicon-on-insulator wafers.23
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FIG. 2. Crystalline Si-QW data and theoretical fit. Experi-
mental data from Ref. 23. Experimental PL data from Ref.
39. Theoretical fit using A=0.35 and EGap(∞) = 1.12 eV in
Eq. (3). NB: The CBM shift is offset by the EGap(∞).

The same methods described above were used to deter-
mine experimentally the ∆EV BM(CBM) and the change
in the gap energy including the total electron yield for a
better signal to noise ratio. The thickness of the Si layer
was determined by XPS using a mean free path in Si of
∼1.6 nm. Note that a thickness of 0.5 nm corresponds to
a single unit cell of Si. Therefore, experimental data be-
low ≈ 1 nm should be treated with caution. In a parallel
study, these c-Si/SiO2 QWs were investigated optically.39

Fig. 2 compares experimental measurements and the
model results for c-Si-QWs. The EG(∞) in the model is
1.12 eV and the ∆EV BM is not significant below 1.5 nm.
The ∆ECBM , ∆ECBM+V BM , and the experimental PL
are all well fitted by the curve for medium confinement,
with A = 0.35. In Ref. 39 it was found that there is a sec-
ond PL peak fixed with respect to the Si layer thickness
at 1.8 eV. This second peak was associated with inter-
face states. Therefore, we can assign the experimental PL
data in Fig. 2 with direct e-h recombination modelled by
medium confinement.

2. QDs

First we consider Si QDs formed by ion implantation in
SiO2 films, followed by high-temperature annealing in N2

and forming gas.40 Ref. 40 reports the QD diameter and
crystalline structure observed by TEM, and room tem-
perature PL measurements. TEM data show a Gaussian
distribution in the Si-QD diameter with depth, resulting
in a stretched exponential PL dynamic.4,40

We compare ion-implanted Si-QDs with Si QDs in a
SiO2 matrix prepared by microwave plasma decompo-
sition (MPD) creating ultrafine and densely packed Si
QDs22 (implying that tunnelling effects are important



TABLE I. Parameter A given in Eq. (3) for 3D, 2D and 1D confinement.

3D 2D 1D

Strong Medium Weak Strong Medium Weak Strong Medium Weak

Si 3.57 1.39 0.91 2.09 0.81 0.53 0.89 0.35 0.23

Ge 7.88 2.69 1.77 4.62 1.58 1.04 1.97 0.67 0.44
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FIG. 3. Crystalline and amorphous Si-QD data and theo-
retical fit. ‘Expt. Ion-Implantion SiO2’ refers to crystalline
Si QDs embedded in SiO2 from Ref. 40. ‘Expt. microwave
plasma decomposition (MPD) SiO2’ refers to crystalline Si
QDs embedded in SiO2 from Ref. 22. ‘Expt. plasma en-
hanced chemical vapour deposition (PCVD) SiN’ refers to
amorphous Si QDs embedded in SiN from Ref. 43. Theoret-
ical fit using A=3.57 and 1.39 and EGap(∞) = 1.12 or 1.56
eV (as labeled) in Eq. (3). NB: The absorption data is offset
by the EGap(∞).

here41). The crystallinity and size was determined by
TEM imaging and XRD, respectively. In Ref. 22, the au-
thors note that PL was not observed unless the Si QDs
were oxidized, implying that surface bonds were passi-
vated with suboxide states eventually forming a surround
SiO2 matrix.
Fig. 3 shows the experimental PL data for ion-

implantated and MPD Si QDs together with our cal-
culated curves for strong and medium confinement.
Above 3 nm both sets of experimental data follow
closely the model of strong confinement with A=3.57 and
EG(∞)=1.12 eV. This indicates that for sample diame-
ters larger than this size tunnelling effects are significant,
implying a de-localization of carrier states. Iacona et al.
measured a similar trend for experimental PL data.42 Be-
low 3 nm, when QC effects are particularly strong, the
ion-implantation data follows the curve for medium con-
finement, with A=1.39.
Next we consider a-Si QDs embedded in a SiN

matrix.43 The Si QDs were fabricated using plasma en-
hanced chemical vapour deposition. The size and amor-
phous structure were measured using TEM and the PL

was taken at room temperature. Absorption data was
taken by ultraviolet-visible absorption spectroscopy. The
value for the bulk band gap given by the authors is 1.56
eV, which is obtained via a fitting procedure. This value
is known to vary between 1.5→1.6 eV, for Si samples
prepared similarly.43

We can see in Fig. 3 that the experimental data
for absorption and PL of a-Si QDs embedded in SiN
lies between the curve for medium (A=1.39) and strong
(A=3.57) confinement, with EGap(∞)=1.56. Using a fit-
ting procedure, the authors of Ref. 43 found A=2.40.
The authors further conclude that by observing the fact
that the experimental absorption data lies close to the
PL data, one can conclude that the PL data for these
samples is a good measure of the actual change in the
EG(D).43 Notice that this situation is similar to that ob-
served for Si-QWs (see Fig. 1 and 2).

3. Quantum Wires

Due to inherent complications in the fabrication pro-
cess of Si or Ge wires with a diameter below the Bohr
radius, few studies on QC in nano-wires exist and we are
only able to report on c-Si-Q-wires. On the other hand,
por-Si studies are widely cited in the literature. With
suitable control of the etchant, por-Si QDs can become
elongated,44 thus breaking confinement in one direction
implying they are more wire-like; a detailed discussion is
provided in Ref. 45. In this case, they are called pseudo-
por-Si-QDs or in the case they behave like interconnected
dots, spherites.46

Anodically grown por-Si samples were prepared by
Schuppler et al.47 X-ray absorption measurements deter-
mined the structures to be closer to c-Si than to a-Si.
TEM was used to determine the size and PL measure-
ments were performed at room temperature. The por-Si
structures are said to be H-passivated and O-free; how-
ever, samples were exposed to air.
Si Q-wires were produced by Ma et al. using an

oxide-assisted growth method with SiO powders.48 Sub-
sequently, the wires were cleaned with HF to remove the
oxide, thus forming a H-terminated surface. Scanning
tunnelling microscopy was used to determine the diame-
ter of the wires. The formation of SiH2 and SiH3 was ob-
served on the facets of the Q-wires, which was attributed
to bending stresses in the wires. The energy gap was de-
termined using scanning tunnelling spectroscopy, which
also indicated doping levels in the wires as seen by an
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asymmetrical shift of the EG around 0 V.
The experimental data from Ma et al. and Schuppler

et al. can be seen in Fig. 4. Below 3 nm the experimental
data from Schuppler et al. (‘por-Si Wire PL’) lie close
to the curve for 2D strong confinement with A=2.09 and
EGap(∞)=1.12 eV. Notice that the experimental data
also lie close to the curve for 3D medium confinement
with A=1.39. This observation may be a reflection of the
idea that these structures are between dots and wires.
On the other hand, the data from Ma et al. lie close
to the curve for 3D strong confinement, using the same
EGap(∞) and A=3.57. We also note that recently Si-Q-
wires have been produced49 with results nearly identical
to those of Ma et al.
Experimental data on pseudo-por-Si-QDs for both ab-

sorption and PL are taken from Ref. 46 and 50. Raman
and TEM measurements were used to determine the size
and the ‘spherite’ nature of the samples, respectively. PL
measurements were performed at room temperature and
at 4.2K, with very little difference in the two measure-
ments. Optical absorption was performed at room tem-
perature. It is also noted in Ref. 50 that, for por-Si,
interface states and phonon events are significant. Fig. 4
shows the PL and absorption experimental data for por-
Si-QDs. Here the experimental data are modelled by the
curve for 3D strong confinement, with A=3.57 and the
same gap energy as above. Compared to absorption and
PL data for a-Si-QDs in Fig. 3 and the Si-QWs in Fig.
1 and 2, there is a significant shift between the absorp-
tion data and the PL data, indicating a Stokes shift in
the emission.50 Furthermore, as noted in Ref. 46, the ex-
perimental PL data are nearly identical to Takagi et al.,
shown in Fig. 3.
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B. Germanium

The first observation of QC in Ge was by Takeok et
al.51 In this study, they produced Ge QDs using an rf co-
sputtering method followed by thermal annealing. The
size of the Ge QDs was controlled by varying the ini-
tial Ge concentration and was later determined by TEM
imaging, which also showed that the Ge QDs were highly
crystalline. PL was performed at room temperature.
In a more recent study, Ge QDs were produced by con-

densation out of the gas phase onto a Si substrate cleaned
by HF.52 The Ge QDs were determined to be in the bulk
diamond crystalline phase. X-ray absorption (XAS) data
were taken and can be seen in Fig. 5. XAS excites the Ge
2p electron into the conduction band; therefore, the re-
searchers obtained data for the change in the conduction
band.
The experimental data from Refs. 51 and 52 are pre-

sented in Fig. 5. Note that the absorption data are
obtained by shifting the Bostedt et. al. data by the
EG(∞) of Ge at 0.66 eV. Further note that above 3 nm
there is a nearly identical departure from the medium
confinement curve into strong confinement as was seen
with Si-QDs in Fig. 3. In general, both sets of experi-
mental data are well modelled by the curve for medium
confinement with A=2.69 and EGap(∞) = 0.66 eV. For
the smaller sizes (below 2.5 nm) the behaviour appears
to deviate from medium confinement. This result may be
because for the smaller sizes the authors only estimated
the sizes.51 In Ref. 52 the size was determined using
atomic force microscopy, which is known to improperly
determine the width of an object.53 Therefore, if the QDs
are not symmetric then the diameter measurements could
be inaccurate.



IV. DISCUSSION

To summarize the comparisons made in Sec. III, we
first consider the relationship between experimental ab-
sorption and PL data. In the case of disordered-Si-QWs
(Fig. 1), c-Si-QWs (Fig. 2) and a-Si-QDs in SiN (Fig. 3)
the absorption curve follows closely with the PL. As men-
tioned in Sec. III A 2, this result indicates that the PL
measurement is an accurate measure of EG(D). Further-
more, in the case of Si-QWs the VBM does not change
significantly. Therefore, we conclude that the model de-
pendence between these three systems does not lie in the
change in the VBM.
Considering the absorption data from por-Si-QDs (Fig.

4), there is a significant shift between the absorption data
and PL data, which was noted in Sec. III A 3. In addi-
tion, the por-Si QD data are nearly identical to the MPD
Si-QDs (Fig. 3), which indicates that these systems are
structurally similar with similar decay dynamics. In the
case of por-Si it has been found that this system is under
tensile stress.54 Tensile stress, which is a function of the
thickness of oxide, is known to increase the band gap.55 It
is known that the surrounding oxide has a strong effect
on the resulting PL in por-Si.56 The resulting Si-O-Si
bonds due to the oxidation process place large stresses
on the por-Si crystallites. In addition, it has been shown
that the dominant PL comes from surface states.50 At
the surface or interface states, it has been shown that
band bending on the order of 0.2→0.3 eV can occur.57

Such a shift in energy corresponds with the discrepancy
shown in Fig. 3 and 4.
For the c-Si-Q-wires measured by STS (Fig. 4), the

data are modelled by strong confinement. This is be-
cause of the stresses observed in the system and possibly
because of the doping; both are factors that do change the
nature of electronic structure. In Sec. III A 3, we men-
tioned that these structures experience bending stress,
which has a tensile component. Furthermore, Fig. 4 il-
lustrates that c-Si-Q-wires are identical in energy to por-
Si; therefore, the analysis of these systems is similar. By
contrast, the por-Si wire PL data (Fig. 4) behaves more
wire-like, which may be a result of the fact the authors
took care to minimize oxygen exposure (see Sec. III A 3).
From Fig. 3 and 5, both ion implanted Si-QDs and

Ge-QDs have the same behaviour above 3 nm. They lie
close to the curve for strong confinement, similar to the
case of por-Si, indicating that possible stresses or inter-
face states are important in this regime. Ge is known
to experience stress in a SiO2 matrix.58 Tensile stress
can be relieved depending on the nature of the interface
bonds and the surface to volume ratio of Si:SiO2.

55 In the
work of Ref. 35 it was found from Raman spectroscopy
that ion-implanted QDs are not under stress for diame-
ters smaller than 3 nm. Therefore, c-Si-QDs produced
by ion implantation and c-Ge-QDs are well modelled by
medium confinement below 3 nm.
Finally, a-Si-QDs in SiN (Fig. 3) lie between medium

and strong confinement (see Sec. III A 2). SiN has a

band gap of 5.3 eV versus SiO2 at 9.2 eV, which allows
for tunnelling of carrier states.43 More importantly, if we
consider the nucleation process during thermal anneal-
ing and consider the bond enthalpies for diatomic species
(SiN at 470 kJ/mol and SiO at 799 kJ/mol), it is easier
to break SiN bonds, thus allowing for a greater degree
of intermixing at the QD-matrix interface. Therefore, a
SiN matrix acts more like a finite potential barrier, which
lowers the gap energy from the infinite case. A numeri-
cal computation indicates that the difference between the
case of finite versus infinite confinement potential is be-
tween 10% and 15% depending on the size of the system.
This difference exactly corresponds with the difference
we see in Fig. 3. Therefore, we conclude that a-Si-QDs
in SiN are well modelled by strong confinement.
From the results above and considering modifications

that must be made to our model to account for non-direct
e-h recombination phenomena, it is clear that strong con-
finement describes a-materials and medium confinement
describes c-materials. Therefore, since QC of a particle
is a function of the delocalization of that particle with
respect to the dimension of the system, we need to ac-
count for the fact that the hole becomes more delocalized
in the a-system than in the c-system. This fact may or
may not be seen as a shift in the VBM. As noted above,
disordered-Si-QWs, c-Si-QWs and a-Si-QDs in SiN all do
not show a large variation in the VBM.
A mechanism for pinning of the hole states in c-Si-QDs

was discussed in the work of Sa’ar et al. as a function
of the hole coupling with vibrons.59 However, this phe-
nomenon does not account for the fact that the hole be-
comes more delocalized in the a-system, it is well known
that band-tail states play a very important role in the
band structure of a-materials, even though the popula-
tion density is relatively low.28 Kanemitsu et al. (and
Refs. within), report the experimental observation that
the band-tail states become strongly delocalized in the
a-system, while the hole remains relatively localized in
the c-system.60 This observation accounts for what is ob-
served in this work.
Another critical factor to discuss is the effective mass

concept, particularly in the a-system. Recall from Sec.
II, the bulk effective mass is used in the calculations.
It is possible that this parameter is not well-justified
in the a-system28 and is simply not valid in the nano-
structured system, in the worst possible case, or it is
size-dependent.61–63

The a-system has typically 80%64 of the density of the
c-system, while disordered Si generally refers to a density
≈ 98%65 of that of c-Si, and these values can vary widely
based on the preparation method.66 Therefore, short and
medium range structural order does remain in both of
these systems. Although the long-range order is not well-
defined in the a-system along with the k-vectors, alter-
native approaches to this concept have been extensively
presented. In an earlier work, Kivelson et al. defined
an alternative approach to this concept.67 They formu-
lated the assumptions (i) the structure of the solid can



be approximated by a rigid continuous random network
that is homogeneous on the scale of the slowly varying
envelope, and (ii) the band can be measured by a set
of linearly independent orbits, which are not necessarily
orthogonal. Furthermore, Kivelson et al. used a tight-
binding approach with approximate eigenvalues to obtain
the effective mass Hamiltonian. In another approach68,
Singh looked at the effective masses in the extended and
tail-states around the mobility edge directly using a real-
space formulation. The electron energy eigenvalues are
given in terms of the probability amplitude, which can-
not be defined as in the case of a c-material in terms of
k-vectors. Instead, the probability amplitude is defined
as68:

C1l = N−1/2 exp(ise · l), with se(E) =

√

2m∗
e(E − EC)

~2

where EC defines the mobility edge; therefore, the ef-
fective mass is defined above the mobility edge in the
extended states and is imaginary in the tail states. In
either approach described here, the result is that the ef-
fective mass calculated is lower than in the bulk system.
The size dependence of the effective mass in c-systems

is reported in Refs. 61–63. Experimentally, the effective
mass is reported to decrease with size in Ref. 62 and
63. In one theoretical report, the hole effective mass in-
creases, while the electron effective mass decreases.61 The
magnitude of change in the effective mass is roughly the
same for the electron and the hole, and considering the ef-
fective mass of the electron in the bulk system is roughly
twice that of the hole, it is not likely that the change will
be within experimental resolution. Overall, the effective
mass in the a-system and in the nano-structured system
is understood to decrease, but the magnitude of the de-
crease is unclear. Therefore, in terms of the calculations
presented here, if the effective mass is lowered than we
should expect to see an increase on the calculated EG and
hence our curves will shift upwards. However, we would
also expect to see an increase in EG from the experi-

mental results because a lowering of the effective mass
means an increase in the Bohr radius and hence stronger
confinement effects should be observed. Since the exact
magnitude of these changes is not known it is difficult
to evaluate the error incurred by using the bulk effective
mass.

V. CONCLUSION

We have studied the effect of confinement dimensions
and crystallinity on the magnitude of the band gap ex-
pansion (as a function of decreasing size) in group IV
semiconductor nanostructures (quantum wells (QWs),
wires (Q-wires) and dots (QDs). Medium and strong
confinement models provide the best fit to experimental
results; moreover crystalline materials exhibit medium
confinement, while amorphous materials exhibit strong
confinement regardless of the confinement dimensions of
the system. This difference in confinement strength was
explained by considering the extent of spatial delocal-
ization of the hole. A possible explanation is hole pin-
ning due to coupling with the vibronic states.59 It has
previously been reported60 that band tail states become
strongly delocalized in the amorphous system compared
to the crystalline system. This hole delocalization would
partially account for the trends observed in our work.
The concept of the effective mass was reviewed for the
amorphous system. We argue that the effective mass can
still be defined in the amorphous material around the
mobility edge.67,68 A lower value of the effective mass is
reported for the amorphous system, while the hole mass
increases and the electron mass decreases as a function
of spatial confinement.61–63 With the diminished effective
mass (the absolute value of this change is not possible to
estimate, and more work is needed in this area), we ex-
pect an increase in EGap, and our calculated curves of
energy versus diameter will be shifted upwards. However
the general trends observed in this work will remain the
same.
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